
Integrable deformations of oscillator chains from quantum algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 8851

(http://iopscience.iop.org/0305-4470/32/50/306)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 07:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/50
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 8851–8862. Printed in the UK PII: S0305-4470(99)00968-3

Integrable deformations of oscillator chains from quantum
algebras
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Abstract. A family of completely integrable nonlinear deformations of systems ofN harmonic
oscillators are constructed from the non-standard quantum deformation of thesl(2,R) algebra.
Explicit expressions for all the associated integrals of motion are given and the long-range nature
of the interactions introduced by the deformation is shown to be linked to the underlying co-algebra
structure. Separability and superintegrability properties of such systems are analysed, and their
connection with classical angular momentum chains is used to construct a non-standard integrable
deformation of theXXX hyperbolic Gaudin system.

1. Introduction

The construction of integrable systems is an outstanding application of Lie algebras in both
classical and quantum mechanics [1, 2]. In fact, the very definition of integrability is based
on the concept of involutivity of the conserved quantities with respect to a (either Poisson
or commutator) Lie bracket. During recent years, many new results concerning ‘quantum’
deformations of Lie algebras and groups have been obtained (see, for instance [3]), and this
work has extended in many different directions the original deformations that appeared in the
context of (classical and quantum) inverse scattering methods [4]. Therefore, the question
concerning whether all of these new nonlinear algebraic structures can be connected in a
systematic way with the integrability properties of a certain class of dynamical systems arises
as a keystone for future developments in the subject.

The aim of this paper is to answer this question in the affirmative by explicitly constructing
someN -dimensional systems through the general and systematic construction of integrable
systems from co-algebras that has been introduced in [5]. Such a procedure is essentially based
on the role that the co-algebra structure, i.e. the existence of a homomorphism1 : A→ A⊗A
defined on a one-particle dynamical algebraA, plays in the propagation of the integrability
from the one-body problem to a generalN -particle Hamiltonian with co-algebra symmetry. In
this framework, quantum algebras (which are just co-algebra deformations) can be interpreted
as dynamical symmetries that generate in a direct way a large class of integrable deformations.
In order to extract the essential properties of the systems associated with quantum algebras,
we shall concentrate here on the explicit construction and analysis of integrable deformations
of (classical mechanical) oscillator chains obtained from quantumsl(2,R) co-algebras. We
recall that quantum algebra deformations ofsl(2,R) are basic in quantum algebra theory and
can be found, for instance, in [3].
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In the next section we briefly summarize the general construction of [5] and fix the notation.
Section 3 deals with oscillator chains obtained from the non-standard quantumsl(2,R) co-
algebra [6–8] through a linear Hamiltonian of the typeH = J++α J−. This deformation can be
interpreted either as a direct algebraic implementation of a certain type of long-range interaction
or, equivalently, in relation with a certain integrable perturbation of the motion of a particle
under any central potential in theN -dimensional Euclidean space. Through these examples we
will show an intrinsic connection between quantum deformations and nonlinear interactions
depending on the momenta. Next, the construction of anharmonic chains is studied, thus
showing the number of integrable systems that can be easily derived by following the present
approach with different choices for the generating HamiltonianH.

The problem of separation of variables of these oscillator chains is analysed in section 4.
As a result, it is shown that the integrable deformation introduced in section 3 is not separable.
However, some other choices forH lead to Sẗackel systems, thus preserving separability
and superintegrability after deformation. In section 5 we also present the direct relationship
between thesesl(2,R) oscillator chains and classical spin models, and we explicitly construct
the non-standard deformation of the classicalXXX hyperbolic Gaudin system [9–12]. As
happened with the standard deformation, the non-standard one generates a complicated
variable range [13] integrable interaction. Some final remarks and comments close the
paper.

2. From co-algebras to integrable Hamiltonians

The main result of [5] can be summarized as follows: any co-algebra(A,1) with Casimir
elementC can be considered as the generating symmetry that, after choosing a non-trivial
representation, gives rise to a large family of integrable systems in a systematic way. Here,
we shall consider classical mechanical systems and, consequently, we shall make use of
Poisson realizationsD of Lie and quantum algebras of the formD : A → C∞(q, p).
However, we recall that the formalism is also directly applicable to quantum mechanical
systems.

Let (A,1) be a (Poisson) co-algebra with generatorsXi (i = 1, . . . , l) and Casimir
elementC(X1, . . . , Xl). Therefore, the co-product1 : A → A ⊗ A is a Poisson map with
respect to the usual Poisson bracket onA⊗ A:{

Xi ⊗Xj,Xr ⊗Xs
}
A⊗A = {Xi,Xr} ⊗XjXs +XiXr ⊗ {Xj,Xs}. (2.1)

Let us consider theN th co-product1(N)(Xi) of the generators

1(N) : A→ A⊗ A⊗ . . .N) ⊗ A (2.2)

which is obtained (see [5]) by applying recursively the two-co-product1(2) ≡ 1 in the form

1(N) := (id ⊗ id ⊗ . . .N−2) ⊗ id ⊗1(2)) ◦1(N−1). (2.3)

By taking into account that themth co-product(m 6 N) of the Casimir1(m)(C) can be
embedded into the tensor product ofN copies ofA as

1(m) : A→ {A⊗ A⊗ . . .m) ⊗ A} ⊗ {1⊗ 1⊗ . . .N−m) ⊗ 1} (2.4)

it can be shown that{
1(m)(C),1(N)(Xi)

}
A⊗A⊗...N)⊗A = 0 i = 1, . . . , l m = 2, . . . , N. (2.5)
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With this in mind it can be proven [5] that, ifH is anarbitrary (smooth) function of
the generators ofA, theN -particle Hamiltonian defined onA ⊗ A ⊗ . . .N) ⊗ A as theN th
co-product ofH

H(N) := 1(N)(H(X1, . . . , Xl)) = H(1(N)(X1), . . . , 1
(N)(Xl)) (2.6)

fulfils {
C(m),H (N)

}
A⊗A⊗...N)⊗A = 0 m = 2, . . . , N (2.7)

where theN − 1 functionsC(m) (m = 2, . . . , N) are defined through the co-products of the
CasimirC

C(m) := 1(m)(C(X1, . . . , Xl)) = C(1(m)(X1), . . . , 1
(m)(Xl)) (2.8)

and all the integrals of motionC(m) are in involution{
C(m), C(n)

}
A⊗A⊗...N)⊗A = 0 m, n = 2, . . . , N. (2.9)

Therefore, once a realization ofA on a one-particle phase space is given, theN -particle
HamiltonianH(N) will be a function ofN canonical pairs(qi, pi) and is, by construction,
completely integrable with respect to the usual Poisson bracket

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
. (2.10)

Furthermore, its integrals of motion will be given by theC(m) functions, all of them functionally
independent since each of them depends on the firstm pairs(qi, pi) of canonical coordinates.

In particular, this result can be applied to universal enveloping algebras of Lie algebras
U(g) [14], since they are always endowed with a natural (primitive) Hopf algebra structure of
the form

1(Xi) = Xi ⊗ 1 + 1⊗Xi (2.11)

whereXi is any generator ofg. Moreover, since quantum algebras are also (deformed) co-
algebras(Az,1z), any function of the generators of a given quantum algebra with Casimir
elementCz will provide, under a chosen deformed representation, a completely integrable
Hamiltonian.

3. Oscillator chains from sl(2,R) co-algebras

The obtention of integrable oscillator chains by using the previous approach can be achieved
by selecting Poisson co-algebras(A,1) such that the one-dimensional harmonic oscillator
Hamiltonian with angular frequencyω (and unit mass) can be written as the phase space
representationD of a certain functionH of the generators ofA:

H = D(H) = p2 + ω2q2. (3.1)

It is well known thatsl(2,R) can be considered as a dynamical algebra forH . Hence, when
deformations ofsl(2,R) co-algebras are considered, a big class of new integrable deformations
of oscillator chains can be obtained.

In particular, let us introduce the Poisson bracket analogue of the non-standard deformation
of sl(2,R) [8] given by

{J3, J+} = 2J+ coshzJ− {J3, J−} = −2
sinhzJ−

z
{J−, J+} = 4J3 (3.2)
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wherez is the deformation parameter. A Poisson co-algebra structure(Uz(sl(2,R)),1z), is
obtained by means of the following co-product:

1z(J−) = J− ⊗ 1 + 1⊗ J−
1z(J+) = J+ ⊗ ezJ− + e−zJ− ⊗ J+

1z(J3) = J3⊗ ezJ− + e−zJ− ⊗ J3.

(3.3)

The corresponding Casimir function reads

Cz = J 2
3 −

sinhzJ−
z

J+. (3.4)

A one-particle phase space realizationDz of (3.2) is given by

f̃
(1)
− = Dz(J−) = q2

1

f̃ (1)+ = Dz(J+) = sinhzq2
1

zq2
1

p2
1 +

zb1

sinhzq2
1

f̃
(1)
3 = Dz(J3) = sinhzq2

1

zq2
1

q1p1

(3.5)

whereb1 is a real constant that labels the representation through the Casimir:C(1)z = Dz(Cz) =
−b1.

Let us now consider the dynamical generator

H = J+ + ω2J−. (3.6)

Under (3.5), we obtain a new deformation of the oscillator Hamiltonian (3.1) including a
deformed centrifugal term governed by the parameterb1:

H(1)
z = Dz(H) = f̃ (1)+ + ω2f̃

(1)
− =

sinhzq2
1

zq2
1

p2
1 + ω2q2

1 +
zb1

sinhzq2
1

. (3.7)

Now, we follow the constructive method of section 2 and derive the two-particle phase
space realization from the co-product (3.3) and two copies of the realization (3.5):

f̃
(2)
− = (Dz ⊗Dz)(1z(J−)) = q2

1 + q2
2

f̃ (2)+ = (Dz ⊗Dz)(1z(J+))

=
(

sinhzq2
1

zq2
1

p2
1 +

zb1

sinhzq2
1

)
ezq

2
2 +

(
sinhzq2

2

zq2
2

p2
2 +

zb2

sinhzq2
2

)
e−zq

2
1

f̃
(2)
3 = (Dz ⊗Dz)(1z(J3)) = sinhzq2

1

zq2
1

q1p1 ezq
2
2 +

sinhzq2
2

zq2
2

q2p2 e−zq
2
1 .

(3.8)

It can be easily checked that these functions close again the deformed algebra (3.2) under the
usual Poisson bracket

{
qi, pj

} = δi j .
By following (2.6), the two-particle Hamiltonian will be given by the realization of the

co-product ofH: H(2)
z = (Dz ⊗Dz)(1z(H)) = f̃ (2)+ + ω2f̃

(2)
− ; it reads

H(2)
z =

sinhzq2
1

zq2
1

p2
1 ezq

2
2 +

sinhzq2
2

zq2
2

p2
2 e−zq

2
1 + ω2(q2

1 + q2
2) +

zb1

sinhzq2
1

ezq
2
2 +

zb2

sinhzq2
2

e−zq
2
1 .

(3.9)
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The co-product for the Casimir,C(2)z = (Dz ⊗Dz)(1z(Cz)), leads to the following integral of
the motion for (3.9):

C(2)z = −
sinhzq2

1

zq2
1

sinhzq2
2

zq2
2

(
q1p2 − q2p1

)2
e−zq

2
1 ezq

2
2 − (b1 e2zq2

2 + b2 e−2zq2
1 )

−
(
b1

sinhzq2
2

sinhzq2
1

+ b2
sinhzq2

1

sinhzq2
2

)
e−zq

2
1 ezq

2
2 . (3.10)

TheN -dimensional generalization for this system follows from the realization of the
co-algebra on anN -dimensional phase space. In general, anm-dimensional phase space
realization is obtained through the tensor product ofm copies of (3.5) applied onto themth
deformed co-product (2.3), which is in turn induced from the two-body co-product (3.3) (see
[5] for an explicit example). In our case, this construction gives

f̃
(m)
− =

m∑
i=1

q2
i

f̃ (m)+ =
m∑
i=1

(
sinhzq2

i

zq2
i

p2
i +

zbi

sinhzq2
i

)
ezK

(m)
i (q2)

f̃
(m)
3 =

m∑
i=1

sinhzq2
i

zq2
i

qipi ezK
(m)
i (q2) (3.11)

where theK-functions that we will use hereafter are defined by

K
(m)
i (x) = −

i−1∑
k=1

xk +
m∑

l=i+1

xl (3.12)

K
(m)
ij (x) = K(m)

i (x) +K(m)
j (x)

= −2
i−1∑
k=1

xk − xi + xj + 2
m∑

l=j+1

xl i < j. (3.13)

From now on, any sum defined on an empty set of indices will be assumed to be zero. For
instance,K(3)

1 (x) = x2 + x3,K(3)
2 (x) = −x1 + x3 andK(3)

3 (x) = −x1− x2.
Consequently, theN -dimensional Hamiltonian associated with the dynamical generator

(3.6) is just

H(N)
z = f̃ (N)+ + ω2f̃

(N)
− =

N∑
i=1

(
sinhzq2

i

zq2
i

p2
i +

zbi

sinhzq2
i

)
ezK

(N)
i (q2) + ω2

N∑
i=1

q2
i . (3.14)

This characterizes a chain of interacting oscillators where the long-range nature of the coupling
introduced by the deformation is encoded through the functionsK

(N)
i (q2). The followingN−1

integrals of motion are deduced from themth coproducts of the Casimir(m = 2, . . . , N):

C(m)z = −
m∑
i<j

sinhzq2
i

zq2
i

sinhzq2
j

zq2
j

(qipj − qjpi)2ezK
(m)
ij (q2) −

m∑
i=1

bi e2zK(m)
i (q2)

−
m∑
i<j

(
bi

sinhzq2
j

sinhzq2
i

+ bj
sinhzq2

i

sinhzq2
j

)
ezK

(m)
ij (q2). (3.15)
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We point out that the following property is useful in the previous computations:

sinh(z
∑m

i=1 xi)

z
=

m∑
i=1

sinhzxi
z

ezK
(m)
i (x). (3.16)

The undeformed counterpart of the above systems can be directly obtained by applying
the limit z → 0 in all the expressions that we have just deduced. In particular, the Poisson
co-algebra(U(sl(2,R)),1) is defined by the Lie–Poisson algebra

{J3, J+} = 2J+ {J3, J−} = −2J− {J−, J+} = 4J3 (3.17)

together with the primitive co-product (2.11), and the Casimir isC = J 2
3 − J−J+. Once the

limit z→ 0 is computed, the deformed phase space realization (3.11), Hamiltonian (3.14) and
integrals of motion (3.15) reduce to

f
(m)
− =

m∑
i=1

q2
i f (m)+ =

m∑
i=1

(
p2
i +

bi

q2
i

)
f
(m)
3 =

m∑
i=1

qipi (3.18)

H(N) =
N∑
i=1

(
p2
i + ω2q2

i +
bi

q2
i

)
(3.19)

C(m) = −
m∑
i<j

(qipj − qjpi)2 −
m∑
i<j

(
bi
q2
j

q2
i

+ bj
q2
i

q2
j

)
−

m∑
i=1

bi. (3.20)

Consequently, the non-deformed Poisson co-algebra(U(sl(2,R)),1) provides an uncoupled
chain ofN harmonic oscillators (3.19) (all of them with the same frequency) with centrifugal
terms. We remark that the (well known [1]) complete integrability ofH(N) is obtained
directly from its underlying co-algebra symmetry. Moreover, if the centrifugal terms disappear
(bi = 0), the integralsC(m) are just the quadratic Casimirs of theso(m) algebras with
m = 2, . . . , N . It is also a classical result that the Hamiltonian (3.19) isso(N) invariant,
since it can be interpreted as the one for a particle moving on theN -dimensional Euclidean
space under the central potentialω2 r2. We stress that all these known considerations are
deduced in a straightforward way from the co-algebra symmetry of the model.

3.1. A class of integrable anharmonic chains

It is also possible to consider the non-deformed Poisson co-algebra(U(sl(2,R)),1) and a
more general dynamical Hamiltonian than (3.6) of the form

H = J+ +F(J−) (3.21)

where F(J−) is an arbitrary smooth function ofJ−. The formalism ensures that the
corresponding system constructed from (3.21) is also completely integrable, sinceH could
be any functionof the co-algebra generators. Explicitly, this means that anyN -particle
Hamiltonian of the form

H(N) = f (N)+ +F(f (N)− ) =
N∑
i=1

(
p2
i +

bi

q2
i

)
+F

( N∑
i=1

q2
i

)
(3.22)

is completely integrable, and (3.20) are its integrals of motion. Obviously, in the case where
bi = 0, this is a well known result, since (3.22) is just the Hamiltonian describing the motion
of a particle in anN -dimensional Euclidean space under the action of a central potential. The
linear functionF(J−) = ω2 J− leads to the previous harmonic case, and the quadratic one
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F(J−) = J 2
− would give us an interacting chain of quartic oscillators. Further definitions of

the functionF would give rise to many other anharmonic chains, all of them sharing the same
dynamical symmetry and the same integrals of the motion.

Moreover, the corresponding integrable deformation of (3.22) is provided by a realization
of (3.21) in terms of (3.11):

H(N)
z =

m∑
i=1

(
sinhzq2

i

zq2
i

p2
i +

zbi

sinhzq2
i

)
ezK

(m)
i (q2) +F

( N∑
i=1

q2
i

)
(3.23)

and (3.15) are again the associated integrals. This example shows clearly the number of
different systems that can be obtained through the same co-algebra, and the need for a
careful inspection of known integrable systems in order to investigate their possible co-algebra
symmetries.

4. Separation of variables and superintegrability

It is clear thatH(N) (3.19) is the Hamiltonian of a Liouville system [2], so that we find another
set of integrals of motion in involution given by

Ii = p2
i + ω2q2

i +
bi

q2
i

− H
(N)

N
i = 1, . . . , N. (4.1)

Amongst these quantities, onlyN − 1 are functionally independent (
∑N

i=1 Ii = 0) and,
obviously, the following Hamilton–Jacobi equation admits a separable solution:

H(N)(q1, . . . , qN ;p1, . . . , pN) = E pi = ∂W

∂qi

W ≡ W(q1, . . . , qN) =
N∑
i=1

Wi(qi).

(4.2)

The integrals of motionIi are independent with respect to theC(m) (3.20) and, in general,
{C(m), Ii} 6= 0. Hence,H(N) is a superintegrable system.

UnlikeH(N), the deformed HamiltonianH(N)
z (3.14) no longer defines a Liouville system.

In order to analyse whetherH(N)
z admits separation of variables we recall the general criterion

for the separability problem of the Hamilton–Jacobi equation (4.2): this equation is separable
if theN -particle HamiltonianH verifies the following set ofN(N − 1)/2 equations [2]:

∂H

∂pi

∂H

∂pj

∂2H

∂qi∂qj
− ∂H
∂pi

∂H

∂qj

∂2H

∂qi∂pj
− ∂H
∂qi

∂H

∂pj

∂2H

∂pi∂qj
+
∂H

∂qi

∂H

∂qj

∂2H

∂pi∂pj
= 0 (4.3)

wherei, j = 1, . . . , N andi < j .
If we consider the two-particle HamiltonianH(2)

z (3.9), it can be checked that the single
equation (4.3) is not satisfied. This is due to the long-range nature of the deformation
characterized by theK-functions: if we makeK(2)

i = 0 then the general criterion of separability
is fulfilled (the same happens in higher dimensions).

However, the co-algebra construction allows for an infinite family of completely integrable
deformations, all of them sharing the same integrals of motion. With this in mind, it is natural
to study whether some ‘modifications’ of the initial dynamical generatorH (3.6) (whose non-
deformed limit (z → 0) lead again toH(N) (3.19)) enable us to find a separable deformed
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Hamiltonian. As a first step we analyse the two-particle case (3.8) and consider two new
‘candidates’ forH:

H1 = J+eα1zJ− + ω2J−eβ1zJ− ⇒ H
(2)
1,z = f̃ (2)+ eα1zf̃

(2)
− + ω2f̃

(2)
− eβ1zf̃

(2)
− (4.4)

H2 = J+eα2zJ− + ω2

(
eβ2zJ− − 1

β2z

)
⇒ H

(2)
2,z = f̃ (2)+ eα2zf̃

(2)
− + ω2

(
eβ2zf̃

(2)
− − 1

β2z

)
(4.5)

whereα1, α2, β1 andβ2 are real constants; note that under the limitz→ 0 we recover, in both
cases, the non-deformed HamiltonianH(2). If we impose equation (4.3) to be fulfilled, then
we find two solutions for each new Hamiltonian:

H
(2)
1,z : (i) α1 = 1 ω = 0 (ii ) α1 = −1 ω = 0 (4.6)

H
(2)
2,z : (i) α2 = 1 β2 = 2 (ii ) α2 = −1 β2 = −2. (4.7)

Since the two solutions associated withH(2)
1,z arise as particular cases of those corresponding to

H
(2)
2,z once the frequencyω vanishes, we only consider the latter. We stress that the two solutions

(4.7) do not only provide separable Hamiltonian systems in the Hamilton–Jacobi equation (4.2),
they are also Stäckel systems [2]. Furthermore, this property can be generalized to the arbitrary
N -particle case. In the following we construct the Stäckel description for the first solution of
(4.7).

The dynamical generator we start with is given by

H = J+ezJ− + ω2

(
e2zJ− − 1

2z

)
. (4.8)

By introducing the realization (3.11) we obtain the Hamiltonian

H(N)
z =

N∑
i=1

sinhzq2
i

zq2
i

ezq
2
i exp

{
2z

N∑
k=i+1

q2
k

}(
p2
i + bi

(
zqi

sinhzq2
i

)2)

+ω2

(
exp

{
2z
∑N

j=1 q
2
j

}− 1

2z

)
(4.9)

which has the form of a Stäckel system

H(N)
z =

N∑
i=1

ai(q1, . . . , qN)
(

1
2p

2
i +Ui(qi)

)
(4.10)

provided that

ai(q1, . . . , qN) = 2
sinhzq2

i

zq2
i

ezq
2
i exp

{
2z

N∑
k=i+1

q2
k

}
i = 1, . . . , N

U1(q1) = b1

2

(
zq1

sinhzq2
1

)2

+
ω2

4z
ezq

2
1

zq2
1

sinhzq2
1

Ui(qi) = bi

2

(
zqi

sinhzq2
i

)2

i = 2, . . . , N − 1

UN(qN) = bN

2

(
zqN

sinhzq2
N

)2

− ω
2

4z
e−zq

2
N

zq2
N

sinhzq2
N

.

(4.11)
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We recall that Sẗackel’s theorem [2] claims that a system with a Hamiltonian of the form (4.10)
admits separation of variables in the Hamilton–Jacobi equation (4.2) if and only if there exists
anN ×N matrixB whose entriesbij depend only onqj , and such that

detB 6= 0
N∑
j=1

bij (qj ) aj (q1, . . . , qN) = δi1. (4.12)

These requirements are satisfied by our Hamiltonian (4.9); the non-zero elements ofB and its
determinant are found to be

b1N(qN) = zq2
N

2 sinhzq2
N

e−zq
2
N bi i−1(qi−1) =

zq2
i−1

sinhzq2
i−1

e−zq
2
i−1

bii(qi) = − zq2
i

sinhzq2
i

ezq
2
i i = 2, . . . , N

(4.13)

detB = 1

2

N∏
i=1

zq2
i

sinhzq2
i

e−zq
2
i . (4.14)

Sẗackel’s theorem givesN functionally independent integrals of motion in involution which
have the form

Ij =
N∑
i=1

aij
(

1
2p

2
i +Ui(qi)

)
j = 1, . . . , N (4.15)

whereaij are the elements of the inverse matrix toB. Thenai1 = ai , so that the first integral
I1 is just the Hamiltonian. In our case, the non-zero functionsaij read

ai1 = 2
sinhzq2

i

zq2
i

ezq
2
i exp

{
2z

N∑
k=i+1

q2
k

}
i = 1, . . . , N

aij = sinhzq2
i

zq2
i

ezq
2
i exp

{
2z

j−1∑
k=i+1

q2
k

}
i = 1, . . . , N i < j.

(4.16)

Consequently, we have proven that besides theN − 1 integrals of motionC(m)z (3.15), the
Hamiltonian (4.9) has another set ofN − 1 conserved quantities given by (4.15):

Ij =
j−1∑
i=1

sinhzq2
i

2zq2
i

ezq
2
i exp

{
2z

j−1∑
k=i+1

q2
k

}(
p2
i + bi

(
zqi

sinhzq2
i

)2)
+
ω2

4z
exp

{
2z

j−1∑
k=1

q2
k

}
(4.17)

with j = 2, . . . , N . Note that the non-deformed limit forIj has to be computed as
limz→0(Ij − ω2/4z) in order to avoid divergences.

The integrals of motionIj are functionally independent with respect to theC(m)z (3.15) and,
in general,{C(m)z , Ij } 6= 0. Hence we conclude that the Hamiltonian (4.9) is superintegrable.

Finally, we remark that a similar procedure can be carried out for the second solution
(4.7), thus obtaining another superintegrable Hamiltonian.

5. Angular momentum chains

The connection between thesl(2,R) oscillator chains without centrifugal terms (bi = 0)
and ‘classical spin’ systems can be also extracted from the underlying co-algebra structure.
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As was shown in [5], if we substitute the canonical realizations used until now in terms of
angular momentum realizations of the same abstractsl(2,R) Poisson co-algebra, the very
same construction will lead us to a ‘classical spin chain’ of theXXX Gaudin type on which
the non-standard quantum deformation can be easily implemented.

In particular, let us consider theS realization of thesl(2,R) Poisson algebra (3.17) given
by

g
(1)
3 = S(J3) = σ 1

3 g(1)+ = S(J+) = σ 1
+ g

(1)
− = S(J−) = σ 1

− (5.1)

where the classical angular momentum variablesσ 1
l fulfil

{σ 1
3 , σ

1
+ } = 2σ 1

+ {σ 1
3 , σ

1
−} = −2σ 1

− {σ 1
−, σ

1
+ } = 4σ 1

3 (5.2)

and are constrained by a given constant value of the Casimir function ofsl(2,R) in the form
c1 = (σ 1

3 )
2 − σ 1

−σ
1
+ .

As usual,m different copies of (5.1) (that, in principle, could have different valuesci
of the Casimir) are distinguished with the aid of a superscriptσ il . Then, themth order of
the co-product (2.11) provides the following realization of the non-deformedsl(2,R) Poisson
co-algebra:

g
(m)
l = (S ⊗ . . .m) ⊗ S)(1(m)(σl)) =

m∑
i=1

σ il l = +,−, 3. (5.3)

Now, we apply the usual construction and takeH from (3.6). Consequently, the uncoupled
oscillator chain (3.19) with allbi = 0 is equivalent to the Hamiltonian

H(N) = g(N)+ + ω2g
(N)
− =

m∑
i=1

(σ i+ + ω2σ i−) (5.4)

and the CasimirsC(m) read(m = 2, . . . , N)

C(m) = (g(m)3 )2 − g(m)− g(m)+ =
m∑
i=1

ci +
m∑
i<j

(σ i3σ
j

3 − σ i−σ j+ − σ j−σ i+). (5.5)

Note that (5.5) are (up to constants) the classical angular momentum analogues ofXXX

Gaudin Hamiltonians of the hyperbolic type [9–11]. In other words, if we consider thesl(2,R)
Casimir function as the dynamical HamiltonianH = J 2

3 − J−J+, such a Gaudin system can
be obtained through the co-algebra symmetry [5, 14]. As a consequence, a non-standard
deformation of the Gaudin system can be now constructed through the deformed Casimir by
taking

H = J 2
3 −

sinhzJ−
z

J+. (5.6)

The deformed angular momentum realization corresponding toUz(sl(2,R)) is

g̃
(1)
− = Sz(J−) = σ 1

− g̃(1)+ = Sz(J+) =
sinhzσ 1

−
zσ 1−

σ 1
+

g̃
(1)
3 = Sz(J3) =

sinhzσ 1
−

zσ 1−
σ 1

3

(5.7)
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where the classical coordinatesσ 1
l are defined on the conec1 = (σ 1

3 )
2 − σ 1

−σ
1
+ = 0, that is,

we are considering the zero realization. It is easy to check that themth order of the co-product
(3.3) realized in the above representation (5.7) leads to the following functions:

g̃
(m)
− =

m∑
i=1

σ i− g̃(m)+ =
m∑
i=1

sinhzσ i−
zσ i−

σ i+ezK
(m)
i (σ−)

g̃
(m)
3 =

m∑
i=1

sinhzσ i−
zσ i−

σ i3ezK
(m)
i (σ−)

(5.8)

that define the non-standard deformation of (5.3). Therefore, theN th co-product of the
deformed Casimir gives rise to the non-standard Gaudin system

H(N)
z ≡ C(N)z = (g̃(N)3 )2 − sinhzg̃(N)−

z
g̃(N)+

=
N∑
i<j

sinhzσ i−
zσ i−

sinhzσ j−
zσ

j
−

ezK
(N)
ij (σ−)(σ i3σ

j

3 − σ i−σ j+ − σ i+σ j−) (5.9)

that, by construction, commutes with all lower-dimensional Gaudin HamiltoniansC(m)z with
m < N and also with any of theN -site representations (5.8) of the generators of the deformed
algebra. This Hamiltonian is the angular momentum counterpart to (3.15) forbi = 0.

If we recall the result coming from the standard deformation ofsl(2,R) [5]

C(N)z = 2
N∑
i<j

sinh( 1
2zσ̄

i
3)

σ̄ i3 z/2

sinh( 1
2zσ̄

j

3 )

σ̄
j

3 z/2
ezK

(N)
ij (σ̄3)/2

(
σ̄ i3 σ̄

j

3 − σ̄ i1 σ̄ j1 − σ̄ i2 σ̄ j2
)

(5.10)

where(σ̄ i3)
2 − (σ̄ i1)2 − (σ̄ i2)2 = 0, we observe a strong formal similarity with respect to

(5.9) since the deformation can be interpreted in both cases as the introduction of a variable
range interaction in the model (compare (5.9) and (5.10) with (5.5)). However, within the
non-standard deformation the variable range factor is constructed in terms of functions ofσ−
(note thatJ− is the primitive generator in this deformation), whereas the standard one contains
functions ofσ̄3 (J3 is now the primitive one) and the geometrical meaning of both coordinates
is completely different.

6. Concluding remarks

The systems presented here can be seen as basic examples of the implementation of integrable
nonlinear interactions through quantum algebras. We would like to recall again the universality
of this construction, which ensures the obtention of deformed integrable systems by using non-
trivial representations of any quantum algebra with a Casimir element.

It is interesting to stress that co-algebra symmetries are also relevant at the undeformed
level, since they account for the integrability properties of known systems like the isotropicN -
dimensional oscillator and the Gaudin magnet. Note that these two systems are superintegrable
and we have seen that, in the first case, some choices of the deformed Hamiltonian do preserve
superintegrability. The question concerning the precise characterization of the deformations
and dynamical Hamiltonians that follow this rule is an open question.

Finally, although further analysis of the deformed dynamics of these models is needed,
two main features can be already be pointed out: the long-range nature of the interactions
and their dependence on momenta. The latter fact can be explored through the generalized
nonlinear oscillators (3.7) that appear as the one-particle HamiltoniansH(1)

z and from which
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the higher-dimensional systems are constructed. In this respect it is interesting to recall that
some relations between generalized nonlinear oscillators and dissipation can be established
[15, 16]. In the same direction, some connections between quantum algebras and this kind
of phenomena have already been envisaged [17]. Finally, notice that long-range interactions
in discrete systems can be linked to dispersive effects in the continuum limit (see [18] and
references therein).
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