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Abstract. A family of completely integrable nonlinear deformations of systema dfarmonic
oscillators are constructed from the non-standard quantum deformation of(h&) algebra.
Explicit expressions for all the associated integrals of motion are given and the long-range nature
of the interactions introduced by the deformation is shown to be linked to the underlying co-algebra
structure. Separability and superintegrability properties of such systems are analysed, and their
connection with classical angular momentum chains is used to construct a non-standard integrable
deformation of theX X X hyperbolic Gaudin system.

1. Introduction

The construction of integrable systems is an outstanding application of Lie algebras in both
classical and quantum mechanics [1, 2]. In fact, the very definition of integrability is based
on the concept of involutivity of the conserved quantities with respect to a (either Poisson
or commutator) Lie bracket. During recent years, many new results concerning ‘quantum’
deformations of Lie algebras and groups have been obtained (see, for instance [3]), and this
work has extended in many different directions the original deformations that appeared in the
context of (classical and quantum) inverse scattering methods [4]. Therefore, the question
concerning whether all of these new nonlinear algebraic structures can be connected in a
systematic way with the integrability properties of a certain class of dynamical systems arises
as a keystone for future developments in the subject.

The aim of this paper is to answer this question in the affirmative by explicitly constructing
someN-dimensional systems through the general and systematic construction of integrable
systems from co-algebras that has beenintroduced in [5]. Such a procedure is essentially based
onthe role that the co-algebra structure, i.e. the existence of a homomorhigm— A® A
defined on a one-particle dynamical algeBraplays in the propagation of the integrability
from the one-body problem to a genei&lparticle Hamiltonian with co-algebra symmetry. In
this framework, quantum algebras (which are just co-algebra deformations) can be interpreted
as dynamical symmetries that generate in a direct way a large class of integrable deformations.
In order to extract the essential properties of the systems associated with quantum algebras,
we shall concentrate here on the explicit construction and analysis of integrable deformations
of (classical mechanical) oscillator chains obtained from quanti#) R) co-algebras. We
recall that quantum algebra deformations @, R) are basic in quantum algebra theory and
can be found, for instance, in [3].
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Inthe next section we briefly summarize the general construction of [5] and fix the notation.
Section 3 deals with oscillator chains obtained from the non-standard quahtriR) co-
algebra [6-8] through a linear Hamiltonian of the type= J.+« J_. This deformation can be
interpreted either as a direct algebraic implementation of a certain type of long-range interaction
or, equivalently, in relation with a certain integrable perturbation of the motion of a particle
under any central potential in thé-dimensional Euclidean space. Through these examples we
will show an intrinsic connection between quantum deformations and nonlinear interactions
depending on the momenta. Next, the construction of anharmonic chains is studied, thus
showing the number of integrable systems that can be easily derived by following the present
approach with different choices for the generating Hamiltorian

The problem of separation of variables of these oscillator chains is analysed in section 4.
As aresult, it is shown that the integrable deformation introduced in section 3 is not separable.
However, some other choices fot lead to Sackel systems, thus preserving separability
and superintegrability after deformation. In section 5 we also present the direct relationship
between thesd (2, R) oscillator chains and classical spin models, and we explicitly construct
the non-standard deformation of the classikd X hyperbolic Gaudin system [9-12]. As
happened with the standard deformation, the non-standard one generates a complicated
variable range [13] integrable interaction. Some final remarks and comments close the
paper.

2. From co-algebras to integrable Hamiltonians

The main result of [5] can be summarized as follows: any co-algéfbra\) with Casimir
elementC can be considered as the generating symmetry that, after choosing a non-trivial
representation, gives rise to a large family of integrable systems in a systematic way. Here,
we shall consider classical mechanical systems and, consequently, we shall make use of
Poisson realization® of Lie and quantum algebras of the formm : A — C*(q, p).
However, we recall that the formalism is also directly applicable to quantum mechanical
systems.

Let (A, A) be a (Poisson) co-algebra with generat&rsi = 1,...,[) and Casimir
elementC (X4, ..., X;). Therefore, the co-product : A — A ® A is a Poisson map with
respect to the usual Poisson bracketoo® A:

{Xi®Xj’Xr®Xs} :{Xivxr}®Xsz+Xin®{Xj’Xs}- (21)

A®A
Let us consider th&/th co-productA®™ (X;) of the generators

AN A5 ARAR..V®A (2.2)

which is obtained (see [5]) by applying recursively the two-co-produét = A in the form

A = (idRid®.." 2 Qid® A®?) o AND, (2.3)

By taking into account that theith co-product(m < N) of the CasimirA™ (C) can be
embedded into the tensor productifcopies ofA as

AM A S ARAR..MRAIR{(1I®1®..N "™ 1) (2.4)
it can be shown that

{A™(©), AN (X))} 0 i=1...,1 m=2,...,N. (2.5)

ARA®..M®A



Integrable deformations of oscillator chains 8853

With this in mind it can be proven [5] that, if is anarbitrary (smooth) function of
the generators ofl, the N-particle Hamiltonian defined oA ® A ® ...") ® A as theNth
co-product ofH

HN = AM(H(X1, ..., X)) = H(AM (X1, ..., AN (X)) (2.6)
fulfils

{cm, HM) 0 m=2,....N (2.7)

ARA®..NM®A

where theN — 1 functionsC™ (m = 2, ..., N) are defined through the co-products of the
CasimirC

C™ = A"(C(X1, ..., X)) = C(A™ (Xp), ..., A™ (X)) (2.8)
and all the integrals of motio@® are in involution
{€™,C™} ore ves =0  mn=2... N (2.9)

Therefore, once a realization dfon a one-particle phase space is given,Xhparticle
Hamiltonian H™ will be a function of N canonical pairgg;, p;) and is, by construction,
completely integrable with respect to the usual Poisson bracket

N orof ag  og af>
o) = o) 98 _ 98 9 2.10
-8l ;(3% dpi  9q; Op; (2.10)

Furthermore, its integrals of motion will be given by & functions, all of them functionally
independent since each of them depends on thefigsirs(g;, p;) of canonical coordinates.

In particular, this result can be applied to universal enveloping algebras of Lie algebras
U (g) [14], since they are always endowed with a natural (primitive) Hopf algebra structure of
the form

AX)=X;®1+1®X; (2.11)

whereX; is any generator o§. Moreover, since quantum algebras are also (deformed) co-
algebrag(A,, A,), any function of the generators of a given quantum algebra with Casimir
elementC, will provide, under a chosen deformed representation, a completely integrable
Hamiltonian.

3. Oscillator chains from si(2, R) co-algebras

The obtention of integrable oscillator chains by using the previous approach can be achieved
by selecting Poisson co-algebrés, A) such that the one-dimensional harmonic oscillator
Hamiltonian with angular frequenay (and unit mass) can be written as the phase space
representatio® of a certain functior{ of the generators od:

H = D(H) = p? + v?q>. (3.1)

It is well known thats/(2, R) can be considered as a dynamical algebrafoHence, when
deformations of/ (2, R) co-algebras are considered, a big class of new integrable deformations
of oscillator chains can be obtained.

In particular, letusintroduce the Poisson bracket analogue of the non-standard deformation
of s/(2, R) [8] given by

sinhzJ_

{J, J.} = 2J, coshzJ_ {(Ja, ]} =—2 (J_, J.} = 4Js (3.2)
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where; is the deformation parameter. A Poisson co-algebra stru¢tin@l (2, R)), A,), is
obtained by means of the following co-product:

A(J)=J_®1+1Q J_
AU)=)ee-+e- @ U (3.3)
A =hee+e- @ U
The corresponding Casimir function reads
5 sinhzJ_

C,=Js— p Js. (3.4)

A one-particle phase space realizatibnof (3.2) is given by

fP=D.J)=¢?

sinhzg? ,  zbs

2 P1

Y =D, (J.) =
© =D = sinhzg? (3.5)

- sinhzg?
3 =D.(Js) = o tan

q1

whereb; is areal constant that labels the representation through the Ca§ijﬁi& D,(C,) =
—b;.
Let us now consider the dynamical generator

H = J+ +a)2.]_. (36)

Under (3.5), we obtain a new deformation of the oscillator Hamiltonian (3.1) including a
deformed centrifugal term governed by the paramiter

S|nhzq]2_ 2 2 2 ij_
2

p1Twqy

HOY =D, (H) = f® +?fP = : .
@ = D.(H) = [P +?f ” Sheg?

(3.7)

Now, we follow the constructive method of section 2 and derive the two-particle phase
space realization from the co-product (3.3) and two copies of the realization (3.5):
FP = (D.® D)(A(J.) = ] +43
f = (D ® D)(A (1))

) ) : 2
_ (sinhzg} P2+ by \ g3 (SINh2g; pi+ b\ gt (3.8)
zg2 1 sinhzg? zg2 % sinhzg?
1 1 2 2

s sinhzg? > sinhzqg?
2 = (D, ®@ D)(A,(Ja) = ——5 tqupy €% + 12

291 293

2
qopr€ 1,

It can be easily checked that these functions close again the deformed algebra (3.2) under the
usual Poisson brackéy;, p;} = 6; ;.

By following (2.6), the two-particle Hamiltonian will be given by the realization of the
co-product ofH: H® = (D, ® D.)(A,(H)) = £ +w?f?; it reads

Zbl sz

-q2 2 2
Teh+ PRET NI+t 5 €
b 295 sinhzgs sinhzgj

sinhzg? sinhzg?2 2
2611 P2 92 2 e i,

@ _
H” =

(3.9)
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The co-product for the Casimiﬁz(z) = (D; ® D;)(A,(C,)), leads to the following integral of
the motion for (3.9):

sinhzg; sinhz
c? = qu " q2 (q2p2 — 612171) e U — (b €59 + by e X)
1 2

sinhzg? sinhzq?
—(bl 12 4, Z"g)e—zqf & (3.10)
sinhzg; sinhzgs

The N-dimensional generalization for this system follows from the realization of the
co-algebra on anv-dimensional phase space. In generalnaxdimensional phase space
realization is obtained through the tensor product:afopies of (3.5) applied onto theth
deformed co-product (2.3), which is in turn induced from the two-body co-product (3.3) (see
[5] for an explicit example). In our case, this construction gives

= qu

~ “ sinhzq? zb; m) 2
S e L

~ : sinhzg;

x " sinhzg? 2
oy SN e (3.11)
i=1 i

where thek -functions that we will use hereafter are defined by

K™ (x) = Zxk + Z X (3.12)

=i+l
K@) = K™ ) + K" ()

m

:—ZZxk—x,+xj+ZZx, i <j. (3.13)
I=j+1
From now on, any sum defined on an empty set of indices will be assumed to be zero. For
instance,Kf)(x) = xp + x3, Kég) (x) = —x1+x3 andKf')(x) = —Xx1 — Xo.
Consequently, th&/-dimensional Hamiltonian associated with the dynamical generator
(3.6) is just

HY = FO0 4 2 F i(sinhzq,? 2, _2bi )ezKW(qZ) +o? i 2 (3.14)
= w - = P; - o w q; - .
: " —~\ zg? "' sinhzg? —

This characterizes a chain of interacting oscillators where the long-range nature of the coupling
introduced by the deformation is encoded through the funcigfis(¢2). The followingN —1
integrals of motion are deduced from th¢h coproducts of the Casimim = 2, ..., N):

Cém) _ Z Slnhzq Slnhzq (qlpj 4 p; )ZezK,(;")(qz) Zb e22K<m>(q2)

i<j 2qf 24 i=1
m sinhz i 2 m
~ Z( q? ‘) anhzqa)em;, () (3.15)
~\"sinhzg? " sinhz¢?
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We point out that the following property is useful in the previous computations:

m

sinh(z > /L, %) ) sinhzx; KT

Z i1 Z

(3.16)

The undeformed counterpart of the above systems can be directly obtained by applying
the limit z — 0 in all the expressions that we have just deduced. In particular, the Poisson
co-algebraU (si(2, R)), A) is defined by the Lie—Poisson algebra

(Js, Ju) = 2J, (Ja, J_} = —2J_ (J_, J.) = 4Js (3.17)

together with the primitive co-product (2.11), and the Casimit is JZ — J_J.. Once the
limit z — 0 is computed, the deformed phase space realization (3.11), Hamiltonian (3.14) and
integrals of motion (3.15) reduce to

m - m = bi m o
F =3 g w:z(pf?) A =N ap (318)
i=1 i=1

i=1 i

N
b;
H™ = Z(p,? +w?ql + —2) (3.19)
i=1 i
m m q2 qz m
C™ == (gip; — q;p)* - Z(bi—-; +b,~q—’2) - b (3.20)
i<j i<j i J i=1

Consequently, the non-deformed Poisson co-algdlital (2, R)), A) provides an uncoupled
chain of N harmonic oscillators (3.19) (all of them with the same frequency) with centrifugal
terms. We remark that the (well known [1]) complete integrability " is obtained
directly from its underlying co-algebra symmetry. Moreover, if the centrifugal terms disappear
(b; = 0), the integralsC™ are just the quadratic Casimirs of the(m) algebras with

m = 2,...,N. ltis also a classical result that the Hamiltonian (3.199déV) invariant,
since it can be interpreted as the one for a particle moving oVtdémensional Euclidean
space under the central potentiad 2. We stress that all these known considerations are
deduced in a straightforward way from the co-algebra symmetry of the model.

3.1. A class of integrable anharmonic chains

It is also possible to consider the non-deformed Poisson co-algélisa(2, R)), A) and a
more general dynamical Hamiltonian than (3.6) of the form

H=J.+F() (3.21)

where F(J_) is an arbitrary smooth function of_. The formalism ensures that the
corresponding system constructed from (3.21) is also completely integrable sioceld
be any functionof the co-algebra generators. Explicitly, this means that ARgarticle
Hamiltonian of the form

N N
b;
HY = (0 + F(™) = Z(p? + ;) +F (Z af ) (3.22)
i=1 i i=1
is completely integrable, and (3.20) are its integrals of motion. Obviously, in the case where
b; = 0, this is a well known result, since (3.22) is just the Hamiltonian describing the motion
of a particle in anv-dimensional Euclidean space under the action of a central potential. The
linear functionF(J_) = »? J_ leads to the previous harmonic case, and the quadratic one
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F(J-) = J? would give us an interacting chain of quartic oscillators. Further definitions of
the functionF would give rise to many other anharmonic chains, all of them sharing the same
dynamical symmetry and the same integrals of the motion.

Moreover, the corresponding integrable deformation of (3.22) is provided by a realization
of (3.21) in terms of (3.11):

" /sinhzqg? zb; 2 N
HN = Lpie ——— |ek @+ z 3.23
¢ ;( 2q? P sinhzq? — g (3.23)

and (3.15) are again the associated integrals. This example shows clearly the number of
different systems that can be obtained through the same co-algebra, and the need for a
careful inspection of known integrable systems in order to investigate their possible co-algebra
symmetries.

4. Separation of variables and superintegrability

Itis clear thatd ™ (3.19) is the Hamiltonian of a Liouville system [2], so that we find another
set of integrals of motion in involution given by

b:
I = i2+w2qi2+___ i=1...,N. 4.1)

Amongst these quantities, only — 1 are functionally independen[{,"":l I; = 0) and,
obviously, the following Hamilton—Jacobi equation admits a separable solution:

Iw
H™(q1,....qx; p1,---, pn) = E P e
(4.2)

N
W=Wg,....qv) = ) Wilg).
i=1

The integrals of motion; are independent with respect to th&™ (3.20) and, in general,
{Cc™ I} #0. Hence H™) is a superintegrable system.

Unlike H™, the deformed Hamiltoniaff(" (3.14) no longer defines a Liouville system.
In order to analyse whethéf") admits separation of variables we recall the general criterion
for the separability problem of the Hamilton—Jacobi equation (4.2): this equation is separable
if the N-particle HamiltonianH verifies the following set oV (N — 1)/2 equations [2]:

9H 0H 09°H 0H 0H 0°H 9H 0H 9°H +8H 9H 03%H

— = 4.
dpi Opj 9q;9q;  dp; 9q; 9q;0p;  dq; dp; dpidq; q; dq; Ip;dp; 0 “3
wherei, j =1,..., N andi < j.

If we consider the two-particle Hamiltoniaﬁ;a (3.9), it can be checked that the single
equation (4.3) is not satisfied. This is due to the long-range nature of the deformation
characterized by th& -functions: if we makeKi‘z) = Othenthe general criterion of separability
is fulfilled (the same happens in higher dimensions).

However, the co-algebra construction allows for an infinite family of completely integrable
deformations, all of them sharing the same integrals of motion. With this in mind, it is natural
to study whether some ‘modifications’ of the initial dynamical generat¢8.6) (whose non-
deformed limit ¢ — 0) lead again ta7¥) (3.19)) enable us to find a separable deformed
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Hamiltonian. As a first step we analyse the two-particle case (3.8) and consider two new
‘candidates’ forH:

Hy = T 4 2] e H(Z) f+(2)ealzf'£2> + wszZ)eﬂlzf'iZ) (4.4)
bzl _ 1 eﬁz:f'fz’ -1
Hp = Jog2/ +w2(—ﬂ2Z ) = HY = [Pel" 4 2(7) (4.5)

whereay, ay, 1 andgB; are real constants; note that under the limit- 0 we recover, in both
cases, the non-deformed Hamiltoni&i®. If we impose equation (4.3) to be fulfilled, then
we find two solutions for each new Hamiltonian:

H?: () a1=1 =0 (i) a1=-1 =0 (4.6)

Since the two solutions associated V\HlfF) arise as particular cases of those corresponding to

HZ(Z) once the frequenay vanishes, we only consider the latter. We stress that the two solutions
(4.7) do notonly provide separable Hamiltonian systems in the Hamilton—Jacobi equation (4.2),
they are also Sickel systems [2]. Furthermore, this property can be generalized to the arbitrary
N-particle case. In the following we construct théd&kel description for the first solution of
4.7).

The dynamical generator we start with is given by

&l —1
H = J.&- +a)2<2—). (4.8)
Z

By introducing the realization (3.11) we obtain the Hamiltonian

N H 2 N 2
sinhzgs _ - 2qi
HY =3 20 g expl2: 3 g2t p?+0i( =
: —~  zq? - W\ PP Sinhzq?

i=1 k=i+1
exp{2: 3" 142} -1
2 J J
W 4.9
( 2 (4.9)
which has the form of a &tkel system
N
H™ =%"a;i(qu. ... qn) (307 + Ui(q:)) (4.10)
provided that
sinhzg? al
ai(q1,...,qy) =2 qu‘ ezqizexp{Zzquz} i=1,...,N
2q; k=i+1
by Zq1 2 w? 243
Ui(q1) = S\s 5| € ———
sinhzg; 4z sinhzg; (4.11)
b; g \° .
Ui(gi) = | = =2,...,N—-1
(@) 2 (smhzqf) l
by N 2 w2 2 Zé]l%,
U =— — — ety N,
vaav) = <sinhzq,2\,> 4z sinhzq?
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We recall that Sickel's theorem [2] claims that a system with a Hamiltonian of the form (4.10)
admits separation of variables in the Hamilton—Jacobi equation (4.2) if and only if there exists
anN x N matrix B whose entrie$;; depend only org;, and such that
N
detB #0 > bij(g) aj(qy. - ... qn) = 8i1. (4.12)
j=1

These requirements are satisfied by our Hamiltonian (4.9); the non-zero elemBrasoits
determinant are found to be

2 2
4 _; 2q;_ g
blN(qN) = 2$|r:1—hNZq2 «.41%/ b,‘,‘_j_(qi_l) = W e Zqzz—l
N i-1
22 , (4.13)
bii(q) = ————— €1 j=2,...,N
(q:) Slnhzqiz i
18 z4? ,
detB = - —L e, 4.14
2 111 sinhzg? (4.14)

Stackel's theorem gived’ functionally independent integrals of motion in involution which
have the form

N
I; :Zaij(%pi2+ui(Qi)) j=1L....N (4.15)
i=1

whereg;; are the elements of the inverse matrixdo Thena;; = g;, so that the first integral
I is just the Hamiltonian. In our case, the non-zero functignsead

sinhzg? N
a1=2 Zqzzq, ezquexp{Zz Z q,f} i=1...,N

i k=i+1

, i1 (4.16)
sinhzgs - { - 2} ) o
a;; = ——— €% expy 2z i=1....N i<]j.
j Zqiz p k;ICIk J

Consequently, we have proven that besidesNhe 1 integrals of motionC{™ (3.15), the
Hamiltonian (4.9) has another set®f— 1 conserved quantities given by (4.15):

i=1 Ginh. o2 i1 2 2 i1
e { 2}< 2 ( h >> 7 { 2}
I~=E ——L &9 expl2z E T+ bi| = + — expi2z
! = 2z} g k=;+1Qk P sinhzg? 4z g = o
(4.17)

with j = 2,..., N. Note that the non-deformed limit fof; has to be computed as
lim,_o(I; — @?/4z) in order to avoid divergences.
The integrals of motiod; are functionally independent with respect toﬂj@ (3.15) and,
in general {C™, I;} # 0. Hence we conclude that the Hamiltonian (4.9) is superintegrable.
Finally, we remark that a similar procedure can be carried out for the second solution
(4.7), thus obtaining another superintegrable Hamiltonian.

5. Angular momentum chains

The connection between thé(2, R) oscillator chains without centrifugal terms; (= 0)
and ‘classical spin’ systems can be also extracted from the underlying co-algebra structure.
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As was shown in [5], if we substitute the canonical realizations used until now in terms of
angular momentum realizations of the same absti@ R) Poisson co-algebra, the very
same construction will lead us to a ‘classical spin chain’ of XX Gaudin type on which
the non-standard quantum deformation can be easily implemented.

In particular, let us consider therealization of thel/(2, R) Poisson algebra (3.17) given

by

e = S(Jz) = o3 ¢ =5, = ol ¢P =51.)=0t (5.1)
where the classical angular momentum variabjegulfil
{031, ol} =201 {031, ol = —20t (o1, ol} = 4031 (5.2)

and are constrained by a given constant value of the Casimir functidifR) in the form
1= (0_1)2 O.lo.l
1 3 +
As usual,m different copies of (5.1) (that, in principle, could have different valges
of the Casimir) are distinguished with the aid of a superserjpt Then, themth order of
the co-product (2.11) provides the following realization of the non-deforh@jRR) Poisson

co-algebra:
g"=0®.."NAM ) =) o I=+-3 (5.3)

Now, we apply the usual construction and t&drom (3.6). Consequently, the uncoupled
oscillator chain (3.19) with ab; = 0 is equivalent to the Hamiltonian

HN — g(N) +w g(N) Z(U +a)20' (5.4)

and the Casimir€ ™ read(m = 2, ..., N)

m

cm — (gém))Z g(m)ggm) Z o+ 2(0303 —olol = OJUJ_ (5.5)

i<j

Note that (5.5) are (up to constants) the classical angular momentum analoguEX of
Gaudin Hamiltonians of the hyperbolic type [9-11]. In other words, if we consider (AeR)
Casimir function as the dynamical Hamiltonizh= J2Z — J_J., such a Gaudin system can
be obtained through the co-algebra symmetry [5,14]. As a consequence, a non-standard
deformation of the Gaudin system can be now constructed through the deformed Casimir by
taking

sinhzJ_
H=J2- 2220, (5.6)
Z

The deformed angular momentum realization correspondig td (2, R)) is

sinhzo?
gD =5.(J) =ol g0 =5S.(J,) = — ol
. B (5.7)
) sinhzo! |
83 = S:(J3) = 1 03

20Z
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where the classical coordinates are defined on the cong = (03)? — olol = 0, that is,
we are considering the zero realization. Itis easy to check thatttherder of the co-product
(3.3) realized in the above representation (5.7) leads to the following functions:

m

sinhzo’! -
~(m) =~(m) __ i K" (02)
=2 & D PR

i=1 <0

sinhzo! (5-8)
. (m)
ggm) = E —i _UéeZKi )

i—1 <0_—

that define the non-standard deformation of (5.3). Therefore Mtieco-product of the
deformed Casimir gives rise to the non-standard Gaudin system

. ~(N)
N sinhzg"’ _
H(N) _ C(N) ( =( ))2 - gJ(rN)

N o P j

sinhzo! sinhze?! . w oo )

= E —l—j e'Kf/ (Uf)(()'éo’é —O’LO‘ G+O' ) (59)
i<j <9- z0Z

that, by construction, commutes with all lower-dimensional Gaudin HamiltorG&mswith
m < N and also with any of th& -site representations (5.8) of the generators of the deformed

algebra. This Hamiltonian is the angular momentum counterpart to (3.1b) fo0.
If we recall the result coming from the standard deformatios (%, R) [5]

N sinh(iz5!) sinh(ize ) W)= o o
2<%3 2<¥3 K, (03)/2(=i =J —i =]
v (‘73 03

cM =2 —5ic! —6ia) (5.10)
z < 5i2/2 032/2 101 203)

where (55)? — (61)% — (35)? = 0, we observe a strong formal similarity with respect to
(5.9) since the deformation can be interpreted in both cases as the introduction of a variable
range interaction in the model (compare (5.9) and (5.10) with (5.5)). However, within the
non-standard deformation the variable range factor is constructed in terms of functians of
(note that/_ is the primitive generator in this deformation), whereas the standard one contains
functions ofa; (J3 is now the primitive one) and the geometrical meaning of both coordinates

is completely different.

6. Concluding remarks

The systems presented here can be seen as basic examples of the implementation of integrable
nonlinear interactions through quantum algebras. We would like to recall again the universality
of this construction, which ensures the obtention of deformed integrable systems by using non-
trivial representations of any quantum algebra with a Casimir element.

It is interesting to stress that co-algebra symmetries are also relevant at the undeformed
level, since they account for the integrability properties of known systems like the isoifepic
dimensional oscillator and the Gaudin magnet. Note that these two systems are superintegrable
and we have seen that, in the first case, some choices of the deformed Hamiltonian do preserve
superintegrability. The question concerning the precise characterization of the deformations
and dynamical Hamiltonians that follow this rule is an open question.

Finally, although further analysis of the deformed dynamics of these models is needed,
two main features can be already be pointed out: the long-range nature of the interactions
and their dependence on momenta. The latter fact can be explored through the generalized
nonlinear oscillators (3.7) that appear as the one-particle Hamiltow&hsand from which
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the higher-dimensional systems are constructed. In this respect it is interesting to recall that
some relations between generalized nonlinear oscillators and dissipation can be established
[15, 16]. In the same direction, some connections between quantum algebras and this kind
of phenomena have already been envisaged [17]. Finally, notice that long-range interactions
in discrete systems can be linked to dispersive effects in the continuum limit (see [18] and
references therein).
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